current events

The Secession war
secession war picture

The 1898 Spanish American war
1898 Hispano American war The Crimean war
naval tech

INDUSTRIAL ERA NAVAL TECH

Wide subject, as the century of steam also contains a number of advances in shipbuilding, and around military issues.

Steel industry: The great revolution of naval artillery :

Steel for example, originally embryonic, becomes accomplished to the point of allowing the melting of metal plates of large dimensions, ad also making larger shells, and duplicate more easily all the parts associated with a specific machinery. The traditional timber could'nt satisfying anymore any fleet because of its own limits of endurance loads, heat, moisture ... The steel industry also made it possible to design composite plates of different metals and alloys, hence the origin of the very first composite armor plates which were the mainstay of the Ironclad era. More importantly, the techniques of modern fondry bring a marked increase in quality for lower price. Thus, it was common for the guns to crack and explode in the eighteenth century, depending of their origin. It is estimated as well as the quality of the original molding template, it could take a number of lined before reaching their limits of strength and become dangerous to their users. With the science of modern steelmaking, more longer guns were produced, while being more reliable and durable, playing on the assembly of parts to create a recoil brake already built into the structure of the canon, to adding an alloy core more resistant to heat, and especially to create a trustful mechanism for breech loading. Tactical advantages were obvious : Breech loading was easier and faster in the heat of battle, range was greatly increased, now reaching ten miles and more, and maintenance was also easier.

The passage of the SBML (Smoothbore muzzle loading) to the RML (Rifle muzzle loading), to the RBL (Rifled Breech loading) was effective around 1850, altoough many ships in 1880 still bear both RML and RBL. At that time, the first drying breech guns were still unreliable and many gunners had serious suspicious of it. But the conservatism ended with the development of these, and from an elite minority alongside the muzzle-loading, have become the majority, and in 1865, the exclusive dotation of any warship, in any caliber. The process of rifled barrels was already ancient and had the function of the projectile to rotate very fast, as resulting in better penetration into the air: The result was that same length and same caliber guns became both increasingly accurate, and with greater range. But as they were still few armouries capable of producing such gun (one by country-only speaking of the greatest at the time), they were expensive and generally the biggest guns on board, only two or four of these beeing produced per ship.

Gunnery improvements

The classical smoothbore gun in use since the time of the Renaissance was built of rough casting in bronze or iron, usually garnished with side handles that were used in fact to its handling by pulleys, on a natural lever point. The cannon bore was sometimes contituted of a different metal, treated to be more resistent, an early attempt of composite guns. The gun was based on a mobile carriage (in depth) consisting of a wooden base mounted on wheels on which rested two media surrounding the tube, resting on cylindrical bulges at the base of the barrel. The Canon was aimed thanks to a primitive wedge-shaped wooden insert at its base, just hammered more or less. The recoil was reduced through a combination of wheels on the lookout and its attachment to the internal wall of the battery by a system of pulleys (brague to hoists), which deadened the energy released when firing.

The recoil of the barrel was calculated for the team of gunners to reload the mouth, to relent operation that requires hoists for the fall even in the middle of the bridge battery, a pre-cleaning with the swab, "sweeping" the tube to extract soot and deposits resulting from combustion, and the laying of the loose powder wrapped in a canvas bag pushed to the bottom of the barrel, loading the ball in the same way, then re-positionning by traction the whole lot to the wall by pulling on the hoist of Brague, and then reloading the flint hammer. Because of the dangerousness of the blow to the GPO, the latter, after setting up, by pressing the corner to the desired depth with a mallet, retreated and pulled on the rope that freed the dog. It was also customary in a heavy fire to throw buckets of water on the barrels of the guns, an ever dangerous operation because the under the thermical schock, the elaready developing cracks in the barrled could result in an explosion in the face of the crew on the next shot. It was also used to spread sand on the deck so that men do not slip on the blood of victims of splinters, the main result of the impact on even a thick wooden composite wall...

The whole operation took about twenty seconds on average, but officers were trying to bring batteries that number to fifteen or even twelve to respond more quickly to the adverse ship. Some dashing and able captains, even made hard-turns, allowing them to use their opposite broadside. Some extreme-aiming methods included the removing the rear wheels of the carriage to further increase the rise, especially when it came to get the opposite ship dismasted (to fire over the battery on the basis of masts, or cut the rigging with the infamous chain-shot). Standard shots were sometimes replaced by a hotchpotch of pieces of iron, grapples, or grapeshot against the crew and riflemen of the enemy ship. For each gun, five to nine men were necessary, which explains the importance of crews piled on sixty meters of a vessel. The lateral aiming of the broadside was limited, the ship was simply steered around towards the goal, and usually lost the use of the battery from the other side during classic engagement (although, as specificed above, smaller and more agile vessels can compensate their lighter broadside by just swapping sides, allowing the other to reload). The classical tactic of the "line" of battle, ships following and fighting at close range (less than 500 meters due to the very poor accuracy of the guns), and the origin of the "ship of the line" class, then passed to the "battleship" class in more modern way is meant to cook during the Second World War. One of the favorite tactic was to try to outflank the back or front of the queue to move opposite to the other side and thus make use of its other broadside, while keeping the line. Pass astern of a ship was also a tactic to destroy its rudder, paralyzing it at the same time. Nelson favorite tactic, usually in numerical inferiority, was to create a local numerical superiority by sending his ships in two parallel lines on each side of the enemy line. This "sandwiched broadside" tactic was a gamble : dealing with the biggest enemy ships - including the flagship, and have all of them destroyed, and the entire fleet was supposed to collapse. This was the case both at Trafalgar and Aboukir.

Revolution in gun aiming : Turrets and Barbettes.

With the progress of the industrial age, the gun will change considerably during the 1870s, several successive revolutions: First, thanks to new alloys, including steel, machine guns could be fitted with a cylinder head opening. The moving parts makes it possible more or less than loading projectiles breech. The loading operation was thus significantly facilitated and the decline of the room did not need to consume an important place in the bridge battery. But he still had many detractors and not really required until about 1890. Another innovation was to place the cannon on a swivel looking metal side. We asked this because looking on rails in the halfpipe, which enabled the roll in position angle of 80 to 90 degrees, compared with the previous zero angle guns. Swivel guns and allowed the ship to keep its road and to fire or is the goal. And we are moving to a smaller number of guns, but orientation and larger caliber, which would give the central battery ironclads.

It must be on site Columbia Elswick Armstrong and English engineer Ericsson inventing a new type of brake down more suitable, consisting of metal strips placed on the rails Parallel and friction with other vertical stripes constitute the look-out and a mechanism to allow channels to put the unit in place, but everything was still working at the force of arms. With guns than twelve tons, it was appropriate to consider another solution: We will then proceed on hydraulic brake and not mechanical, and secondly, for pointing to the solution of the watch mobile turn, the forerunner of the turret. In 1861, the United States, the Stevens brothers had devised a battery of high seas with fully adjustable mounts on guns in all directions. This brilliant precursor was not followed. By John Ericcson against the Americans proposed a "turret" avant-garde as gun carriage and turned all screening. This leads to the ship that becomes universally known minimalist: the monitor. This system, however, was quite heavy because the turret was placed on a shaft and rested on the bridge, it was a powerful mechanism for the hydraulic lift and rotate to the desired angle. In turn, the Englishman John Coles, commander of active conceived and proposed an improved turret system. The principle remained the same, but the turret rested permanently on the bearings, which simplified its rotation. Faced with the skepticism of the British Admiralty (short term), Coles offered his invention to the Danes who adopted it for their monitor Rolf Krake in 1864. The French in turn, used a system but also turning barbette, the screen is quite low and the gunners were not protected. But this system conut long success through simplicity in particular to ensure the loading maneuvers.

The site was then Elswick Armstrong-simplify and refine pointing maneuvers, loading guns, by inventing a system based entirely on water power rather than steam. By 1890, this system became the majority, and radiation technique (and commercial) would give the site a large majority position in the production of naval ordnance, and shipbuilding itself. The quality of the British steel industry was also profier to the melting of parts much longer: The "size" is the measure of length comparison between the fly (length of the gun tube from the base of the cylinder head to the mouth), and diameter. And 1850 guns with calibres from June to August, they went to 20 gauges around 1875. This siginfiait also through the introduction of shells, a much greater range, from less than 1000 meters to over 5000. With heavy-loading cannon's mouth who survived still remained the problem of loading, which was solved with creative solutions and varied: for example, are oriented in a transverse position on the lookout sets, and switch on the fly was down so that the bolt is in the air and the mouth in the bridge battery. we also put a system of lift, or all bolt-gun-turret came down to a level ...

About 1895, they began to move away from barbettes poorly protected against fire for oblique and full towers are especially concentrated on a loading system allows to do this regardless of their angle of fire. Mahina at the load is behind the look, but the shells were mounted in the ammunition with a system of escenceur located in the axis of the turret. The shell and cartridge (powder charge usually surrounded by paper) was then brought to office by a truck or a mat reinforced. Then, early in the century, innovation is still possible that loading at any angle, expanding down the entire turret. This system is still in use on the modern automated turrets. Another fundamental innovation, initiated in 1860 concerned the ammunition: It gave up the ball and its derivatives such as grenade explosive special Paixhans.

The latter, invented by engineer Henri-Joseph polytechnicien Paixhans is neither more nor less than the precursor of modern shells. It was established in 1819 and proposed a commission of officers and technicians of the Army. (See "engineers"). But it was not until 1854 that Napoleon III, after the death of the person concerned, decided to build three armored batteries illustrating his theories successfully. Long before Paixhans, Carron invented the famous "carronade" naval guns firing angle firing explosive bullets. It nse sagissait neither more nor less than the spread of mortars in use on marine galliots since the seventeenth century. Nevertheless Paixhans brings the power of explosive projectiles form studied and the ability of these guns to shoot horizontally. The "bombs" more or less spherical and hollow, it will come to form ballistic shells studied in 1870 only. It is the latter, which combined with a scoring of the bore and longer length of the fly will move progressively from 20 000 to 40 meter range 000 of the first to the second world war. The shells of modern rooms are equipped with large deployable wings and provided with additives that brought charges that distance over 100 km, not counting the giant guns reccurence projects since the beginning of the century and the nineteenth century (the gun running the rocket "from Earth to the Moon" by Jules Verne).

Revolutions of steam :

(Coming soon)